Exploring the Structure of the Nucleon

with Generalised Parton Distributions

Ralf Kaiser, University of Glasgow
• Generalised Parton Distributions
• GPD Experiments - with a Glaswegian Flavour
• Future Perspectives for GPD Measurements
Generalised Parton Distributions

Form Factor

Parton Distribution Function

Generalised Parton Distribution
parton distribution functions

\[q(x) = H_q(x, 0, 0) \]
\[\Delta q(x) = \tilde{H}_q(x, 0, 0) \]
\[q(-x) = -\bar{q}(x) \]
\[\Delta q(-x) = \Delta \bar{q}(x) \]

form factors

\[F_1^q(t) = \int_{-1}^1 dx H^q(x, \xi, t) \]
\[F_2^q(t) = \int_{-1}^1 dx E^q(x, \xi, t) \]
\[g_a^q(t) = \int_{-1}^1 dx \tilde{H}^q(x, \xi, t) \]
\[h_a^q(t) = \int_{-1}^1 dx \tilde{E}^q(x, \xi, t) \]

quark orbital angular momentum

\[J_q = \frac{1}{2} \int_{-1}^1 x \, dx [H_q + E_q] \]
\[= \frac{1}{2} \Delta \Sigma + L_q \] [X.Ji 1997]
The Fourier transform of GPDs at $\xi = 0$ leads to a 3-dimensional picture of the nucleon - longitudinal momentum fraction and transverse impact parameter space.

$$q(x, b_\perp) = \int \frac{d^2 \Delta_\perp^2}{(2\pi)^2} H(x, 0, -\Delta_\perp^2) e^{-i\Delta_\perp \cdot b_\perp}$$
u-quark (left) and d-quark (right) density in impact parameter plane. Proton polarised in x-direction.

GPDs and the Spin Puzzle

\[S_z = \frac{1}{2} = J_q + J_g = \frac{1}{2} \Delta \Sigma + \Delta G + L_q + L_g \]

Ji Sum Rule:

\[J_q = \frac{1}{2} \int_{-1}^{1} x dx [H_q + E_q] = \frac{1}{2} \Delta \Sigma + L_q \]

\[\Delta \Sigma = \Sigma \Delta q \sim 0.3 \]

Measure GPDs to determine \(L_q \)!
GPDs and the DVCS Process

- Same final state in DVCS and Bethe-Heitler
 \[d\sigma(eN \rightarrow eN\gamma) \propto |T_{BH}|^2 + |T_{DVCS}|^2 + T_{BH}T^*_{DVCS} + T^*_{BH}T_{DVCS} \]

 \(T_{BH} \) is exactly calculable in QED

- \(T_{DVCS} \) is parameterized in terms of Compton form factors \(\mathcal{H}_q, \tilde{\mathcal{H}}_q, \mathcal{E}_q, \tilde{\mathcal{E}}_q \) (convolutions of GPDs \(H_q, \tilde{H}_q, E_q, \tilde{E}_q \))

- At HERMES kinematics: \(|T_{DVCS}|^2 \ll |T_{BH}|^2 \)

GPDs accessible through cross-section differences and azimuthal asymmetries via interference term
Beam Charge Asymmetry (BCA) $A_C(\phi)$
$$d\sigma(e^+, \phi) - d\sigma(e^-, \phi) \propto Re[F_1H] \cdot \cos \phi$$

Beam Spin Asymmetry (BSA) $A_{LU}(\phi)$
$$d\sigma(\overrightarrow{e}, \phi) - d\sigma(\overleftarrow{e}, \phi) \propto Im[F_1H] \cdot \sin \phi$$

Transverse Target Spin Asymmetry (TTSA) $A_{UT}(\phi, \phi_S)$
$$d\sigma(\phi, \phi_S) - d\sigma(\phi, \phi_S + \pi) \propto Im[F_2H - F_1E] \cdot \sin(\phi - \phi_S) \cdot \cos \phi$$

BCA: Especially sensitive to the D-term in GPD models
BSA: Best chance to directly extract the GPD H^u

TTSA: Only asymmetry in which GPD E is not suppressed. Sensitive to J_q.
Major GPD Experiments - Timeline

- HERMES (2008)
- COMPASS
- PANDA
- JLAB
- JLAB 12 GeV
- EIC (2025)

(c) R. Kaiser 2008
Present and Future ep-Facilities

- **HALL A**
- **CLAS 12**
- **CLAS**
- **HERMES**
- **COMPASS**
- **H1**
- **ZEUS**

Luminosity [cm⁻² s⁻¹]

- 10^{38}
- 10^{37}
- 10^{36}
- 10^{35}
- 10^{34}
- 10^{33}
- 10^{32}
- 10^{31}

E_{CM} [GeV]

- 1
- 10
- 100
- 1000

(c) R. Kaiser 2008
Present and Future ep-Facilities

Luminosity [cm^{-2} s^{-1}]

10^{38}
10^{37}
10^{36}
10^{35}
10^{34}
10^{33}
10^{32}
10^{31}

E_{CM} [GeV]

1
10
100
1000

HALL A

CLAS

HERMES
COMPASS
H1
ZEUS

(c) R. Kaiser 2008
DVCS measurements with Recoil Detector in 2006/7 yielded about as much data as 1995-2005; data are being analysed.
HERMES Recoil Detector

Project Leader RK (Glasgow)
Limits on J_u/J_d

![Diagram showing limits on J_u/J_d.](image)

HERMES DD

HERMES Dual

JLab DD

DFJK

QCDSF

LHPC

JHEP 0806:066, 2008
Glasgow NP Group Member in Hall A and CLAS Collaborations
CLAS12 Detector

Central Detector

Forward Detector

CTOF

Glasgow involved in CTOF

arXiv:0711.0755 (submitted to PRL)
2000 hrs at $L=10^{35}$ cm$^{-2}$s$^{-1}$

Co-Spokesperson E12-06-119 D.Ireland (Glasgow)
2000 hrs at $L=10^{35}$ cm$^{-2}$s$^{-1}$

Co-Spokesperson E12-06-119 D.Ireland (Glasgow)
2000 hrs at L=10^{35} \text{ cm}^{-2}\text{s}^{-1}

Projection for GPD H

Co-Spokesperson E12-06-119 D.Ireland (Glasgow)
Transverse Asymmetry is large and has strong sensitivity to GPD E

CLAS 6 experiment scheduled for 25 days in 2011

RK co-spokesperson

Co-Spokesperson E08-021 RK

$$A_{UT} \sim \sin(\phi - \phi_s) \cos(\phi) \Im\{ F_2^H - F_1^E + \ldots \} + \ldots$$
Chair Collaboration Board G.Rosner (Glasgow)
Project Leader Disc Dirc Design B.Seitz (Glasgow)

STFC Grant for Dipole Magnet
Chair Collaboration Board G. Rosner (Glasgow)
Project Leader Disc DirC Design B. Seitz (Glasgow)

STFC Grant for Dipole Magnet
Chair Collaboration Board G.Rosner (Glasgow)
Project Leader Disc Dirc Design B.Seitz (Glasgow)

STFC Grant for Dipole Magnet
Chair Collaboration Board G. Rosner (Glasgow)
Project Leader Disc DirC Design B. Seitz (Glasgow)

STFC Grant for Dipole Magnet
• PANDA can measure the ‘cross channel’ or ‘time-like’ version of the same process, that depends on the same GPDs
• More precisely on Generalised Distribution Amplitutes, introduced by M. Diehl et.al. to describe the inverse process [PRL.81:1782 (1998)].
The same factorisation proof as for DVCS does not hold for the crossed channel.

Alternative approach: Transition Distribution Amplitudes

TDAs extend the GPD concept to transitions

Impact parameter space interpretation as for GPDs

Fourier transform gives a transverse picture of the pion cloud in the proton
• Current models of TDA predict small cross section (~100 fb)

• Need excellent detector system to remove background

• Measurement feasible with PANDA

• Several concepts for future ep-facility: eRHIC at BNL, ELIC at JLab (together referred to as EIC), LHeC at CERN and ep@FAIR

• All designs use an existing machine and combine it with a second, new machine to a collider

• High luminosity, high energy, energy range

• GPDs are only part of the physics reach of such a facility

Glasgow NP Group Member in EIC Collaboration
DATA

LATTICE

The Way Forward
DATA

LATTICE

MODELS
The Way Forward

DATA

LATTICE

MODELS
The Way Forward

DATA

MODELS

LATTICE
DATA

MODELS

LATTICE

HERMES
The Way Forward

DATA

MODELS

LATTICE

COMPASS

HERMES

HALL A
The Way Forward
The Way Forward

DATA

MODELS

LATTICE

CLAS
PANDA
HERMES
QCDSF
LHPC

EIC
COMPASS
HALL A

VGG
DUAL
The Way Forward

DATA

MODELS

LATTICE

CLAS

EIC

PANDA

COMPASS

HERMES

HALL A

QCDSF

DUAL

LHPC

KMK-P
The Way Forward
Combined Efforts by Experimentalists and Theorists required!!!
Combined Efforts by Experimentalists and Theorists required !!!

EU FP7 JRA ‘Hard Exclusive Reactions Spokesperson RK
• Generalised Parton Distributions are promising to revolutionize our picture of the nucleon and to solve the spin puzzle.

• Present experiments at HERMES and JLab are playing a pioneering role, future experiments after the JLab upgrade, at COMPASS and FAIR will further complete the picture.

• Ultimately a future ep-facility with high luminosity and an energy range up to higher energies will be required to finalise the picture.

• All of this will only be successful in the combination of experiments, lattice calculations and GPD model fits to the data.
Expected sinφ-dependence in exclusive region.

First HERMES BSA paper was based on 3.3 Mio DIS events. 2006/7 data: 50 Mio DIS, 40 Mio on hydrogen (plus 10 Mio on deuterium), of which 29 Mio DIS (7 Mio) were taken with fully functional Recoil Detector.
GPD H in VGG Model
Symmetrized BCA in exclusive bin

\(\phi \rightarrow |\phi| \Rightarrow \) Cancel \(\sin(\phi) \) dependence

- Solid curve – 4 Parameter Fit
- \(P_1 + P_2 \cos \phi + P_3 \cos 2\phi + P_4 \cos 3\phi \)

\[A_{C,Proton}^{\cos \phi} = 0.063 \pm 0.029 \text{(stat.)} \pm 0.026 \text{(sys.)} \]

Expected \(\cos(\phi) \) dependence \(\Rightarrow ReH \)

A. Airapetian et al, Phys. Rev. D 75 (2007) 011103(R)
GPDs - The Way Forward
GPDs - The Way Forward
GPDs - The Way Forward

DATA

LATTICE
GPDs - The Way Forward

DATA

LATTICE

MODELS
GPDs - The Way Forward

DATA

LATTICE

MODELS
GPDs - The Way Forward

DATA

LATICE

MODELS
GPDs - The Way Forward
GPDs - The Way Forward

DATA

MODELS

LATTICE

HERMES
GPDs - The Way Forward
GPDs - The Way Forward

DATA

HERMES

COMPASS

HALL A
GPDs - The Way Forward

DATA

CLAS

HERMES

COMPASS

HALL A

MODELS

LATTICE
GPDs - The Way Forward

DATA

CLAS

HERMES

EIC

COMPASS

HALL A

MODELS

LATTICE
GPDs - The Way Forward

DATA

CLAS

EIC

PANDA

COMPASS

HERMES

HALL A

MODELS

LATTICE
GPDs - The Way Forward

DATA

CLAS

PANDA

HERMES

EIC

COMPASS

HALL A

MODELS

LATTICE

QCDSF
GPDs - The Way Forward

DATA

CLAS
PANDA
HERMES
EIC
COMPASS
HALL A

MODELS

COMPASS
HALL A
VGG

LATTICE

QCDSF
LHPC
GPDs - The Way Forward

DATA
- CLAS
- PANDA
- HERMES
- COMPASS
- HALL A

MODELS
- EIC

LATTICE
- QCDSF
- LHPC

VGG
DUAL
GPDs - The Way Forward

DATA
- HERMES
- PANDA
- EIC
- COMPASS
- HALL A

MODELS
- CLAS
- QCDSF
- LHPC
- VGG
- DUAL
- KMK-P

LATTICE
GPDs - The Way Forward

DATA

MODELS

LATTICE

CLAS

PANDA

HERMES

EIC

COMPASS

HALL A

QCDSF

LHPC

DUAL

KMK-P
GPDs - The Way Forward

DATA
- CLAS
- EIC
- COMPASS
- HALL A

MODELS
- QCDSF

LATTICE
- LHPC
GPDs - The Way Forward

DATA

CLAS

PANDA

HERMES

EIC

COMPASS

HALL A

MODELS

LATTICE

QCDSF

LHPC

?
GPDs - The Way Forward

DATA

CLAS
PANDA
HERMES

MODELS

EIC
COMPASS
HALL A

LATTICE

QCDSF
LHPC
GPDs - The Way Forward

Combined Efforts by Experimentalists and Theorists required !!!

DATA

CLAS

HERMES

PANDA

EIC

COMPASS

HALL A

MODELS

DATA

LATTICE

QCDSF

LHPC

Combined Efforts by Experimentalists and Theorists required !!!
Present and Future ep-Facilities

Luminosity [cm$^{-2}$ s$^{-1}$]

- HALL A
- CLAS
- CLAS 12
- HERMES
- COMPASS
- FAIR
- ELIC
- eRHIC
- H1
- ZEUS
- LHeC

E_{CM} [GeV]
Major GPD Experiments - Timeline

- HERMES
- COMPASS
- PANDA
- JLAB
- JLAB 12 GeV
- EIC

Timeline:
- 2008
- 2010
- 2015
- 2020
- 2025

(c) R. Kaiser 2008