Coupled Cluster Theory Applied to Spectroscopic Factors of Atomic Nuclei

Øyvind Jensen

University of Bergen, Norway

June 10, 2010

Øyvind Jensen (UoB)

SFs with Coupled Cluster

June 10, 2010 1 / 16

Aknowledgements

- Oak Ridge National Laboratory:
 - Gaute Hagen
 - Thomas Papenbrock
 - David Dean
- University of Oslo:
 - Morten Hjorth-Jensen
- University of Bergen:
 - Jan S. Vaagen

Outline

Spectroscopic Factors (SF)

- 2 Coupled Cluster in nuclear physics
- 3 Application of CC to Spectroscopic Factors

4 Results

5 Conclusion

э

What are Spectroscopic Factors (SF) ?

• Direct reaction. Immediate stripping or pick-up of a particle. $\mathcal{T} \sim \langle \Psi_B \Psi_p \chi^{(-)} | V | \Psi_A \Psi_d \chi^{(+)} \rangle \sim \langle O_A^B \chi^{(-)} | V | O_p^d \chi^{(+)} \rangle$

• Modeled with single particle overlap function

$$O_{A}^{B}(\mathbf{x}) \equiv \sqrt{B} \int \mathrm{d}\xi \Psi_{A}^{*}(\xi) \Psi_{B}(\mathbf{x},\xi) \sim \langle B | a^{\dagger}(\mathbf{x}) | A
angle$$

• SF is experimentally determined as the norm of the overlap function that fits reaction model to measurement.

Øyvind Jensen (UoB)

SFs with Coupled Cluster

SF from perspective of structure theory

Definition

$$S_A^B(lj) = \int \mathrm{d} r r^2 O_A^{B*}(lj;r) O_A^B(lj;r)$$

SF is...

- the squared norm of the overlap function.
- determined from two independent many-body wavefunctions.
- a measure of correlations related to a given orbit in a given nucleus, i.e. validity of an independent particle description.

Coupled Cluster

Wavefunction components

Øyvind Jensen (UoB)

SFs with Coupled Cluster

June 10, 2010 6 / 16

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Coupled Cluster

Wavefunction components

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Recent of developments of Coupled Cluster

• Spherical Coupled Cluster

- **(**) Recognize that the cluster operator T is a *spherical tensor*
- 2 Exploit spherical symmetry with the Wigner-Eckardt theorem.
- 3 Enjoy a tremendous speedup.

Recent of developments of Coupled Cluster

- Spherical Coupled Cluster
 - **(**) Recognize that the cluster operator T is a *spherical tensor*
 - 2 Exploit spherical symmetry with the Wigner-Eckardt theorem.
 - Injoy a tremendous speedup.
- Computational cost: $n_o^2 n_u^4 \rightarrow n_o^{1.33} n_u^{2.66}$
 - $\blacktriangleright~10$ HO shells used to require $\sim 10^4$ processors, now requires a laptop!
 - In recent papers of the ORNL group, N ∼ 20 HO shells. (arXiv:1003.1995, arXiv:0907.4167, arXiv:0905.3167)
 - Coupled Cluster can do medium-mass nuclei ab-inito.

Spectroscopic factors with EOM-Coupled-Cluster

• CC-solution defines a similarity transformed hamiltonian

$$\overline{H} = e^{-T} H e^{T} \tag{1}$$

Correlations in operator vs. in wavefunction

• EOMCC: Eigenstates of *H* written on the form

$$\begin{array}{ll} \langle \tilde{A} | = \langle \Phi_0 | \, L_A e^{-T} & |A \rangle = e^T R_A \, |\Phi_0 \rangle \\ \langle \tilde{B} | = \langle \Phi_0 | \, L_B e^{-T} & |B \rangle = e^T R_B \, |\Phi_0 \rangle \end{array}$$

The operators L_A , L_B , R_A and R_B create eigenstates of \overline{H} .

Hermitian expression for SF

$$\mathcal{S}^{\mathcal{B}}_{A}(lj) \propto \sum_{n} rac{\langle ilde{\mathcal{B}} | a^{\dagger}_{nljm} | A
angle \langle ilde{\mathcal{A}} | a_{nljm} | B
angle}{\langle ilde{\mathcal{A}} | A
angle \langle ilde{\mathcal{B}} | B
angle}$$

$\langle A a_i B\rangle$	<u> </u>	l ⁱ r ₀
	\mathcal{F}	la ^{ij} ra
$\langle A a_a B angle$	<u> </u>	l ⁱ t _i ^a r ₀
	V	l ⁱ r _i a
	<u>(20</u> —	$\frac{1}{2}I_b^{ij}t_{ij}^{ab}r_0$
	<u>(</u> 2)	l ^{ij} t ^a r ^b
	(p ()	$\frac{1}{2}I_b^{ij}r_{ij}^{ab}$
$\langle B a_a^\dagger A angle$	<u> </u>	l ⁱ _a r _i
	$\overline{\mathcal{A}}$	$\frac{1}{2}I_{ab}^{ij}r_{ij}^{b}$
$\langle B a_i^{\dagger} A angle$	<u> </u>	$l^0 r_i$
	°	lar _{ij}
	$\overline{\mathbf{N}}$	$-l_a^j t_i^a r_j$
	$\overline{\sqrt{0}}$	$-\frac{1}{2}l_{ab}^{jk}t_{i}^{a}r_{jk}^{b}$
	<u> ~~</u>	$-\frac{1}{2}l_{ab}^{jk}t_{ik}^{ab}r_{j}$

$^{16}\mathrm{O}$ and $^{15}\mathrm{N}$ with EOMCC, model space convergence

•
$$V_{\rm low-k}(N3LO)$$
, at $\lambda=2.0 fm^{-1}$.

- Up to 7 oscillator shells
- O16 and energy difference converged up to a few MeV

^{16}O and ^{15}N Spectroscopic Factors

- Very good convergence w.r.t. model space
- $p_{3/2}$ and $p_{1/2}$ almost identical
- $s_{1/2}$ much smaller

A-dependence, λ dependence

- Very weak A-dependence
- Short-range correlations important for the SF (λ dependence)
- Very weak isospin dependence

Conclusion and Outlook

- We can do *ab-initio* spectroscopic factors with CC.
- Implementation for Spherical Coupled Cluster (in progress)
- Physically motivated calulations.
- $\bullet\,$ Application to ${\rm ^{40}Ca}, {\rm ^{48}Ca}, {\rm ^{56}Ni}$

Thanks for your time!

æ

< □ > < □ > < □ > < □ > < □ >

A nuclear hamiltonian from QCD

- QCD is non-perturbative at nuclear energy scales.
 - \implies Effective Field Theory:
 - ► Organize the QCD Lagrangian in powers of ^Q/_Λ
 - Λ defines a radius of convergence.
 - Regularization for $Q > \Lambda$.
- Infinite number of "correct" Λ .

Dependence on momentum cut-off Λ

- Nuclear dynamics involve a wide range of energies
 - $E_B \approx 1 8 MeV$ $M_\pi \approx 140 MeV$
 - $E_{kin} \approx 80 MeV$ $E_{\Delta} \approx 300 MeV$
- Λ too low: you may exclude important physics.
- Λ too high: interaction must account for more QCD
 - numerically tougher
 - eventually: more diagrams, more parameters.
- Λ-dependence estimates importance of the high momentum physics.
- Quantities that are very sensitive to Λ are not physical properties(!)

Dependence on momentum cut-off Λ

- Nuclear dynamics involve a wide range of energies
 - $E_B \approx 1 8 MeV$ $M_\pi \approx 140 MeV$
 - $E_{kin} \approx 80 \, MeV$ $E_{\Delta} \approx 300 \, MeV$
- Λ too low: you may exclude important physics.
- Λ too high: interaction must account for more QCD
 - numerically tougher
 - eventually: more diagrams, more parameters.
- Λ-dependence estimates importance of the high momentum physics.
- Quantities that are very sensitive to Λ are not physical properties(!)
- "Bare" interaction is strongly repulsive and needs huge model spaces.
- The cut-off can be lowered further, e.g. by similarity transformations. (V_{low-k})

イロト イポト イヨト イヨト 三日